"Words can be like X-rays if you use them properly – they'll go through anything. You read and you're pierced." (Aldous Huxley)

IMMORAL PROGRAMMING –

THE CASE OF DEEPFAKE SCIENCE ATTACKS

Dr. ir. Leon Kester, Senior Research Scientist, TNO Netherlands

Dr. Nadisha-Marie Aliman, M. Sc., Independent Visiting Scholar, Utrecht University

2

I. Defenses Against Immoral Programming (IP) as Moral Programming (MP)

- II. Deepfake Science Attacks as IP Use Case
- III. Defenses Against Deepfake Science Attacks
- IV. Conclusion

RISK MANAGEMENT FOR MORAL PROGRAMMING

- Mitigation of Al risks linked to mitigation of socio-psycho-techno-physical harm
- Good regulator theorem from cybernetics: "every good regulator of a system must be a model of that system" (Conant and Ashby, 1970) → rigorous harm model needed for moral programming

How and when was AI risk instantiated?		Causes		
		On Purpose	By Mistake	
6	Pre-	а	b	
iin	Deployment			
Tim	Post-	С	d	
	Deployment			

Modified and adapted from Aliman et al. (2021)

EXTENDING MORAL PROGRAMMING

more suitable harm model for moral programming

How and when was AI risk		Causes	
iı	nstantiated?	On Purpose	By Mistake
ing	Pre- Deployment	а	b
Timi	Post- Deployment	с	d

conventional harm model for moral programming

4

immoral programming

- I. Defenses Against Immoral Programming (IP) as Moral Programming (MP)
- II. Deepfake Science Attacks as IP Use Case
- III. Defenses Against Deepfake Science Attacks
- IV. Conclusion

MALICIOUS DEEPFAKE DESIGN

- Deepfake voice for voice impersonation and cybercrime
- Deepfake video for sextortion
- Deepfake images for fake profiles in disinformation operations and espionage
- Deepfake videos for non-consensual voyeurism
- Deepfake "hologram" for impersonation in video calls
- Future deepfakes for deepfake science attacks?

How and when was AI risk		Causes	
iı	nstantiated?	On Purpose	By Mistake
g	Pre-	а	b
tin	Deployment		
Tim	Post-	С	d
	Deployment		

1.0	0.00	1.1		11
		A.L.		
		100 10 12 - 12		

Replacement

Source Target

(Rössler et al., 2019)

(Satter, 2019 (AP news))

(Thies et al., 2020)

6

C

DEEPFAKE TEXT

N.B: Deepfake (deep-learning based fakery) technology is <u>not</u> restricted to images/audios/videos. An often overlooked case is deepfake text.

(Tully and Foster, 2020)

We Asked GPT-3 to Write an Academic Paper about Itself—Then We Tried to Get It Published

An artificially intelligent first author presents many ethical questions—and could upend the publishing process $% \left({{{\left[{{{\rm{T}}_{\rm{T}}} \right]}}} \right)$

By Almira Osmanovic Thunström

DEEPFAKE SCIENCE (ALIMAN, 2021; ALIMAN AND KESTER, 2022)

- Deepfake science attack: The technically possible but not yet widespread malicious use of deepfake artefacts (e.g. deepfake text/audio/ video/image) for the purpose of epistemic distortion in science
- Examplary deepfake text in science generated with language Al model GPT-2 (see table to the right, right column)

Prompt by human	Counterfactual outputs of pre-trained GPT-2
Abstract	[] Here, we assume that a bot that, by modifying and/or manipulating the
	data extracted from the published article, creates an actual original story
In a time in which topics	about fake news, false claims, hoaxes, or lies. These are potentially useful
such as fake news,	means against those intending to harm the credibility [] of an author's
disinformation, deepfakes	work. []
and recently fake science	It is clear that these types of threats could be used to disrupt scientific
affect online debates	debate in the future. [] The threat in question is, therefore, likely to make
amongst the population at	the field far more hostile.
large but also specifically in	Linguistics is a core part of science, and we need to learn it. [] We can't
scientific circles, we	just use algorithms to control it.
thematize the following	[] Liz Y. Wang et al., "A model of the Deep Web, the Deep Web and the
elephant in the room now	First Human-Driving Device ⁺ : a comparative analysis -in order to better
and not in hindsight: what	inform the development and analysis of advanced techniques and
to do if malicious actors use	technologies. Artificial Intelligence and Cyberthreats." IEEE Transactions on
Al for not yet prevalent but	Intelligence 14, 14 (2010): 1797–1805.
technically feasible	[Crossref] [PubMed] 2nd Annual IEEE International Conference on
'deepfake science attacks'	CyberSecurity.
i.e., on (applied) science	[] we present empirical evidence that such false expectations apply
itself? Deepfakes are not	disproportionately to bots compared to humans. []
restricted to audio and	Human Cognition: Human Cognition and Cybernetic Engineering by Michael
visual phenomena and	Schmitt et al., 2002; doi:10.1016/j.heccomplications.2002.01.009
deepfake text whose impact	[] What will be interesting about this issue is how much more targeted
could be potentiated with	the attack will be under AI technologies, based only on what we previously
regard to speed, scope, and	thought was good science. Let us see how this plays out in practice.
scale may represent an	[] The most likely scenario if malicious actors do exploit deepfakes is that
underestimated avenue for	they create a false narrative (by exploiting "fake science"), by using the
malicious actors.	"fake news" as their method of proving the "fake evidence." These tactics
	could even be employed to further their goals by using 'fake science' to
	further their own agendas, or (in this case) to gain public acceptance of
	them. []
	R. Pérez, "Deepfaking Theses at the University of Cambridge," American
	Journal of Physics 37:2890-2915 (2011), pp. 21-233:

- I. Defenses Against Immoral Programming (IP) as Moral Programming (MP)
- II. Deepfake Science Attacks as IP Use Case
- III. Defenses Against Deepfake Science Attacks
- IV. Conclusion

WHY A BETTER APPROACH THAN "DEEPFAKE DETECTION" IS NEEDED AS DEFENSE

1. Deepfakes involve an open adversarial cat-and-mouse game. The adversary can adapt to present-day Al-based detection schemes.

WHY A BETTER APPROACH THAN "DEEPFAKE DETECTION" IS NEEDED AS DEFENSE

2. Any text/audio/video/picture sample could be suspected to be deepfakebased \rightarrow automated disconcertion. Scientists could then unintentionally exclude scientists being statistical outliers even more. (Examples: imagine e.g. scientific videos of people with certain physical health conditions, texts written by eccentric and/or neurodivergent scientists, etc.)

PRESENT-DAY "AI" SHOULD **NOT** BE **OVER**ESTIMATED

CYBORGNETIC COMPREHENSION BOTTLENECK

Asymmetry: ability to create information x ≠ ability to understand information x (example: present-day Al can create outputs perceived as explanations, but present-day Al does not understand it)

PRESENT-DAY "AI" SHOULD **NOT** BE **OVER**ESTIMATED

- The epistemic aim of science can be to achieve <u>better and better</u> explanations (Popper, 1957; Frederick, 2020).
 Science is <u>not</u> merely about data/experiments.
- It is impossible for imitative "Al" to reliably create better <u>new</u> yet unknown chains of explanations (also called explanatory blockchains (Aliman, 2021)) required for novel scientific/philosophical theories.

Exemplary recipe for an explanatory blockchain (Aliman, 2021) loosely inspired by an essay of Frederick (2020)

BUT: THE POTENTIAL OF PRESENT-DAY AI SHOULD ALSO **NOT** BE **UNDER**ESTIMATED

- Deepfake detection may be doomed in the long-term. Prohibiting deepfakes may not be enforceable in the long-term.
- Proactive self-paced exposure to synthetic Al-generated material could prepare scientists for that and enhance their critical thinking.
- Deepfake technology can be used to augment human creativity (e.g. use of language AI to assist in generating new threat models and defenses in AI safety, (cyber)security, risk management, ...)

- I. Defenses Against Immoral Programming (IP) as Moral Programming (MP)
- II. Deepfake Science Attacks as IP Use Case
- III. Defenses Against Deepfake Science Attacks
- IV. Conclusion

CONCLUSION

- Defending against deepfake science attacks can involve a new form of moral programming.
- Science can be robust through its own chain of words by relying on its explanation-anchored (and not merely data-driven) nature which is grounded in better and better new chains of explanations.
- Scientists should <u>not</u> overestimate present-day AI. The question should NOT be: was this contribution generated by present-day AI or by a human?
- A better question for scientists IS: does this contribution encode a better new scientific chain of explanations compared to the ones that are already available?
- One should also <u>not</u> underestimate present-day Al: One can design it to augment people's critical thinking and creativity (e.g. open source language Al to augment scientific creativity and security-relevant research).

THANK YOU FOR YOUR ATTENTION

"The price of security is eternal creativity."

(Aliman, 2020)

"Create new ways to exploit hidden problems."

(GPT-2, which generated but did not understand those words.)

Generic Analyses for AI, Safety and Security Research

Cyborgnetics – The Type I vs. Type II Split

Dr. Nadisha-Marie Aliman, M.Sc.

Somnogrammatical (C) 2021 Nadisha-Marie Kester. All rights reserved.